The efficiency evaluation of stabilization circuits of operation modes of the input stages of the differential and multidifferential operational amplifiers under the influence of ionizing radiation and temperature. Part 2. Current feedback
Abstract
The efficiency evaluation of stabilization circuits of operation modes of the input stages of the differential and multidifferential operational amplifiers under the influence of ionizing radiation and temperature. Part 2. Current feedback
Incoming article date: 22.11.2018This paper presents a radiation hardened by design of differential stages using dynamic loads. The efficiency of proposed design methods to improve the scheme qualitative indicators can be assessed by some evaluation. The theoretical results of the evaluation of the self-compensation circuit effect of parasitic impedance of the output transistor closed collector in the dynamic loads of classical differential stages, which is realized on the base of current feedbacks, are presented. It is shown that the introduction of the current feedbacks allows to reduce the effect of transistors small-signal parameters instabilities of the dynamic load under the influence of ionizing radiation and temperature on it's quality and the parameters of the differential stages. The efficiency evaluation of the circuit solutions in differential stages of modern operational and multidifferential amplifiers is given. The theoretical results of the evaluation of the self-compensation circuit effect of parasitic impedance of the output transistor closed collector in the dynamic loads of classical differential stages, which is realized on the base of current feedbacks, are presented. It is shown that the introduction of the current feedbacks allows to reduce the effect of transistors small-signal parameters instabilities of the dynamic load under the influence of ionizing radiation and temperature on it's quality and the parameters of the differential stages. For the organization of feedback circuits in the structure of dynamic loads, additional current amplifiers based on transistors are introduced into the circuit. It is shown that this approach can increase the output resistance of the dynamic load and increase the gain coefficient of the differential stage under the influence of ionizing radiation and temperature. The efficiency evaluation of the circuit solutions in differential stages of modern operational and multidifferential amplifiers is given. The efficiency evaluation method is based on the construction of a mathematical model of the scheme expressed through low-signal differential h-parameters of the scheme transistors. Thus, the calculation of the main qualitative indicators of the scheme can be carried out by mathematical modeling. The obtained simulation results confirm the efficiency of the proposed circuit design.
Keywords: efficiency evaluation, circuit design, differential stage, dynamic load, destabilizing factors, low-signal parameters