×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Calculation of three-layer structures made of composite material

Abstract

Calculation of three-layer structures made of composite material

Khayrnasov K.Z.

Incoming article date: 02.04.2024

The purpose of the work is to develop a methodology for calculating the stress-strain state of three-layer structures made of composite material under the action of dynamic loads in robotic systems: semi-natural simulation stands, intended mainly for testing the flight characteristics. The stand consists of movable channels that ensure movement of the tested product in three degrees of freedom. The algorithm for creating a three-layer stand made of composite material is as follows. We assign the characteristics of the filler to the model of stand, create surfaces on the model and assign to the created surfaces the characteristics of a multilayer composite material with the orientation of the base of the layers along the lines of the trajectories of maximum stresses. Calculations of a three-layer stand with eight-layer load-bearing layers, with different orientations of the layers, were carried out to determine the structure of a multilayer composite material of maximum strength and rigidity based on theories of the destruction of multilayer materials stating that the destruction of one layer leads to the destruction of the multilayer material as a whole. The stress-strain state of a three-layer of the stand for semi-natural modeling of maximum rigidity and strength was obtained. The developed methodology is applicable to a wide class of problems of calculating the robotic systems made of three-layer composite material.

Keywords: material characteristics, multilayer composite material, modeling methods, three-layer structures, calculation, analysis