Comparison of the effectiveness of edge detection methods in road surface images depending on size and format
Abstract
Comparison of the effectiveness of edge detection methods in road surface images depending on size and format
Incoming article date: 10.04.2024Road surface quality assessment is one of the most urgent tasks in the world. To solve it, there are many systems that mainly interact with images of the roadway. They work on the basis of both traditional methods (machine learning is not used) and machine learning algorithms. Traditional approaches, for example, include methods for edge detection in images that are the object of this study. However, each of the algorithms has certain features. For example, some of them allow to get a processed version of the original photo faster. The following methods were selected for analysis: "Canny algorithm", "Kirsch operator", "Laplace Operator", "Marr-Hildreth algorithm", "Prewitt operator" and "Sobel Operator". The main indicator of effectiveness in the study is the average time to receive the processed photo. The initial material of the experiment is 10 different images of the road surface in 5 sizes (1000x1000, 894x894, 775x775, 632x632, 447x447) in bmp, jpg, png formats. The study found that the "Kirsch operator", "Laplace Operator" and "Prewitt Operator" and "Sobel operator" have a linear dependence of O(n), the "Canny algorithm" and the "Marr-Hildreth algorithm" have a quadratic character of O(n2). The best results are demonstrated by the "Prewitt Operator" and the "Sobel Operator".
Keywords: comparison, effectiveness, method, edge detection, image, photo, road surface, dependence, size, format