Modern methods of determining the parameters of the tool do not take into account all the features of deep loosening, first of all, such important indicators of the quality of soil decompression as the degree of crumbling and the configuration of the loosening zone. Therefore, the search for a solution to the problem of assessing the quality of soil decompression at the design stage, depending on the parameters of the working bodies of the deep miner and the specified physical and mechanical characteristics of the soil is an urgent task. The aim of the work is to develop an algorithm for assessing the influence of the parameters of the upper reformers on the quality of crumbling and the loosening zone based on modern mathematical and simulation modeling technologies. This is achieved by developing a method for determining the parameters of the loosening elements of the deep miner on the basis of modeling the processes of interaction of loosening elements with the soil, taking into account factors that determine the quality of decompression and the energy intensity of the decompression process of the cultivated soil.
Keywords: mathematical modeling, deep loosening, soil loosening elements, calculation algorithm, degree of crumbling
Global Positioning System (GPS) data acquisition devices have proven to be useful tools for collecting real-world motion data. The data collected by these devices provide valuable information when studying the vehicle movement parameters. For vehicle modeling, this data is invaluable for analyzing fuel consumption and vehicle performance. The study presents a methodology for developing the driving cycle of special cars, during which the speed profile of a particular type of vehicle is studied, loaded and processed, and noisy data is filtered for the purity of the experiment. The test data for severe operating conditions are analyzed. A city driving cycle has been developed for a special truck concrete mixer truck in the conditions of the city of Tyumen. Estimated fuel economy of the specified vehicle is estimated.
Keywords: driving cycle, fuel efficiency of concrete mixer truck, noisy data, data filtering, GLONASS/GPS
The paper presents the results of experimental studies on increasing the settling rate and reducing the solid phase in the clarified layer during settling of a solution of sulfuric acid leaching of heavy metals from galvanic sludge. For this purpose, it is proposed to use a monoethanolamine vinyl ester copolymer with sodium or potassium methacrylate as a flocculant. This flocculant works well in a wide range of pH of the solution medium, unlike the well-known and widely used polyacrylamide flocculant. The increase in the efficiency of settling is achieved due to the fact that the flocculant in question makes it possible to simultaneously flocculate positively and negatively charged particles due to the presence of various functional groups in its composition. The use of the proposed flocculant will ensure a more complete extraction of heavy metals from galvanic sludge, which reduces the risk of environmental pollution and their reuse in industry.
Keywords: galvanic sludge, heavy metals, leaching, flocculant, settling, suspended solids
The testing of technique for modeling the local atomic structure and X-ray absorption spectra for zinc ions in an aqueous solution in the presence of arachidic acid has been adjusted. Models of the local structure of zinc with different coordination geometries are considered: planar, pyramidal, tetrahedral, and octahedral. The cases of increasing distances between the zinc ion and water molecules in the plane and in the axial direction are simulated for octahedral coordination. It has been established that the most probable change in the local structure of the zinc environment in solution in the presence of arachidic acid is the removal of water molecules from zinc ions in the axial position and their further replacement with the formation of a bond with the carboxyl group of arachidic acid.
Keywords: arachidic acid, lipid layer, local atomic structure, X-ray absorption spectroscopy, total external reflection, zinc, biomembrane, finite difference method, monolayer
The seismic activity of the zones through which the pipelines are laid has always caused serious concern. The analysis of emergency situations on pipeline systems caused by an earthquake revealed factors affecting their stability: longitudinal and transverse displacement of the soil, the effect of soil liquefaction, faults resulting in open cracks and shear deformations. To prevent damage to pipelines during seismic impact, it is necessary to take into account the nature of the impact on the pipeline structure, the required level of safety for this seismic impact. Currently, special attention is paid to structural solutions and materials from which pipelines are made. The conducted studies allow us to form an approach to assessing the operability of polyethylene and steel pipelines in earthquake-prone areas, and on the basis of a comparative analysis of their stability, to make recommendations on the use of pipelines under specified conditions.
Keywords: hydrocarbons, analysis, pipeline, reliability, seismic impact, deformation, composite materials