Использование детализирующего вектора для нейросетевой классификации сигналов электрокардиограммы
Аннотация
Дата поступления статьи: 01.10.2023Заболевания сердечно-сосудистой системы основная причина смертности населения планеты. Основным способом диагностики заболеваний сердечно-сосудистой системы является снятие электрокардиограммы пациента. Автоматическая обработка сигналов электрокардиограммы позволит врачам своевременно выявить кардиологические проблемы пациента. В данной статье представлен метод вычисления детализирующего вектора для нейросетевой обработки двенадцати канального сигнала электрокардиограммы. Добавление детализирующего вектора к сигналам электрокардиограммы увеличивает точность классификации заболеваний до 87,50 %. Предложенный метод может быть использован для автоматической классификации двух и более канальных сигналов электрокардиограммы.
Ключевые слова: электрокардиограмма, рекуррентная нейронная сеть, нейронная сеть с долгосрочной короткой памятью, детализирующий вектор, PhysioNet Computing in Cardiology Challenge 2021
1.2.2 - Математическое моделирование, численные методы и комплексы программ
.