Разработка гибридной нейросети для классификации изображений
Аннотация
Дата поступления статьи: 15.12.2022В представленной работе предлагается гибридная нейросеть, которая объединяет в себе квантовые и классические вычисления, и предназначается для использования с целью классификации изображений. Гибридная нейросеть реализована на основе классической сверточной нейросети с использованием квантовой схемы. Также в рамках данного исследования выполнено сравнение различных конфигураций гибридной нейросети, в которых использовалось различное количество кубитов. Конфигурации гибридной нейросети были обучены и протестированы на наборах данных CIFAR10 и CIFAR100. Сравнение производительности гибридной нейросети для мультиклассовой классификации осуществлялось для разного количества классов (от 2 до 10) с соответствующим количеством кубитов (от 2 до 4). Полученные в ходе экспериментов результаты подтвердили возможность применения гибридной нейросети для решения задачи мультиклассовой классификации.
Ключевые слова: машинное обучение, глубокое обучение, квантовое машинное обучение, квантовые вычисления, гибридная нейронная сеть, классификация изображений, сверточная нейронная сеть, квантовая схема
.