The wear resistance of friction units with a polymer coating and a special groove in their supporting structure is increased by minimizing the heating of the contact zone of the rubbing surfaces through effective heat removal due to the presence of a transverse recess (groove). In addition, this design helps to minimize the dry friction process, since it directly affects the distribution of the lubricating fluid. Increased loads of friction units entail characteristic changes in the properties of lubricants. In our opinion, taking into account the viscosity indicators, depending on temperature and pressure, will allow us to more accurately characterize the operation of the structure in various friction modes. The effect of a modified friction unit design (with a polymer coating and a groove) on improving performance in general is described. In addition, comparing the standard and modified designs, it can be noted that the load capacity has significantly increased and the friction coefficient has decreased. At the same time, the service life and the overhaul period of the friction unit have increased, which is a significant effect for the mechanical engineering industry.
Keywords: friction unit, index, friction coefficient, polymer coating, load, tribocoupling
This study is devoted to the development of a new mathematical model, a wedge-shaped sliding support with a non-standard elastically deformed support profile of the slider surface, taking into account nonlinear factors, under conditions of a two-layer lubricant flow, providing effective lubrication and reducing wear of the working surface. To develop this model, we will use mathematical modeling and data analysis methods to take into account all the necessary factors and parameters. To achieve this goal, well-known nonlinear equations are used: the motion of a viscous incompressible fluid for a "thin layer", the continuity equation and the Lame equation with appropriate boundary conditions, taking into account the elasticity and adaptability of the support surface of the slider, as well as equality of velocities at the interface of stratified layers, equality of pressure at the ends of the interval and equality of velocities on the surface of the guide. As a result, the main performance characteristics of the ras were identified
Keywords: nonlinear factors, elastically deformed, non-standard surface, flow of two-layer lubricant, dependence of viscosity characteristics of lubricating layers, ratio of density characteristics