×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Development of an adaptive control system for asphalt concrete mixture formulation for Vietnam based on the experiences of Russia

    As of today, in Vietnam, to ensure stability and improve the quality of asphalt concrete, the main focus is on the application of new technologies, materials, or the improvement of design methods. However, despite significant achievements in this area, the issue of automating the processes of asphalt concrete mixture production management remains insufficiently researched and implemented. Based on the experience accumulated in Russia, the authors propose developing a system of adaptive control for the asphalt concrete mixture recipe, which contributes to the stabilization and improvement of production quality. In the article, the authors present the structure of the control system and its algorithms, as well as describe the results of modeling and evaluating the effectiveness of this system. The study shows that the adaptive control system for the asphalt concrete mixture recipe, developed based on the experience from Russia, successfully demonstrates its effectiveness in the conditions of Vietnam.

    Keywords: asphalt concrete, asphalt concrete mix, Marshall stability, control system, formulation, simulation model, modeling, MATLAB, management efficiency

  • Accounting for disturbances in forecasting in an automated control system for asphalt concrete mixture composition

    The quality of asphalt concrete mixture at the output of an asphalt concrete plant is unstable due to disturbances that we cannot control or control with significant delay. Disturbances may include factors such as inaccuracies in the existing relationships between the properties of asphalt concrete mixture components and the parameters of the technological process with the quality of the finished product. Disturbances can also be attributed to our lack of knowledge about the relationships between individual indicators and the quality of the mixture. Forecasting these disturbances to determine the actual quality at the output becomes a key task. Previously, determining the optimal length of data series for forecasting was a challenging task. Nowadays, with the use of modern technologies, this problem has been successfully solved. In this article, the authors propose an adaptive forecasting method to determine the optimal length of data series. The research results include forecasting error values with and without adaptation. The adaptive forecasting method demonstrated smaller values of mean absolute error (MAE) compared to the non-adaptive forecasting method (where the length of the time series is always equal to 100). This allows for more efficient and accurate prediction of cumulative disturbances, which is critically important for ensuring high and stable quality of asphalt concrete mixture.

    Keywords: asphalt concrete, asphalt concrete mixture, disturbance, control system, autoregressive model, forecasting, adaptive forecasting method, optimal length of series, forecast accuracy, mean absolute error

  • Comparison of forecasting methods for solving problems of managing the stability of asphalt concrete mixture

    Prompt adjustment of the composition of the asphalt concrete mixture is key to achieving high quality asphalt concrete. To enable easy and rapid adjustment of the asphalt concrete mixture formulation, predicting the properties of asphalt concrete (Marshall stability) is critically important. There are many methods for predicting the properties of asphalt concrete, but the choice of one method or another is a very pressing problem. This article proposes two methods for forecasting Marshall stability: forecasting using a multiple linear regression model and forecasting using an autoregressive model. To evaluate the forecasting accuracy of models, we use two metrics: average absolute error (MAE) and average absolute percentage error (MAPE). The results of the study show that the autoregressive model exhibits better forecasting results, especially the second-order autoregressive model.

    Keywords: asphalt concrete, control, composition adjustment, forecasting, multiple linear regression model, autoregression model, Marshall stability, forecast accuracy, mean absolute error, mean absolute percentage error