The article discusses modern approaches to the calculation of embedded parts using the most common computing systems in the design environment. The main purpose of the work is a comparative analysis of the stress-strain state of the support plates and anchor rods when calculating in various computing complexes in order to obtain the most reliable and complete results necessary for the designer to ensure reliability when designing components of building structures. In addition to the above, the article focuses on ensuring the rigidity of the support plates, in case of compliance with which, the nodal structural element is able to withstand a single impulse impact.
Keywords: computing complexes, embedded parts, calculation methods, calculation situations, dynamic coefficient, strength indicators
The article discusses modern methods for protecting load-bearing structures from progressive collapse, as well as methods for their calculation in extreme conditions, in order to ensure the safety of buildings and structures, reduce material damage and minimize human casualties as a result of emergency situations. The main purpose of the work is to identify the imperfections of existing methods for calculating building structures against progressive collapse, regarding multi-storey residential complexes, which are characterized by girderless frames, which have significant architectural advantages, as well as revealing the inaccuracies of empirical formulas used in practice for determining the coefficients of dynamic strengthening in tension and compression, which entails a calculation that does not correspond to the actual work of structures.
Keywords: beamless frame, progressive collapse, protection measures, calculations, dynamic coefficient, dynamic strengthening coefficient