The problem of synthesizing the parameters of the drive control system of the responsible unit of the construction 3D printer - the screw dispenser of the print head using the method of neuro-fuzzy control is considered. An algorithm for building an intelligent drive control system is described. A training sample is obtained from the data of variables determined as a result of modeling the automatic system control with a continuous proportional-integral-differentiating (PID) regulator. Training of a neuro-fuzzy output system in the MATLAB software environment is performed using the hybrid method a. Transient characteristics of the control system with continuous and neuro-fuzzy proportional-differentiating (PD) regulator are obtained. Direct indicators of the quality of the considered control systems are determined, and an analysis of these results is carried out. The use of neuro-fuzzy control of the screw doser drive of the 3D printer print head made it possible to obtain the desired a transient process confirmed as a result of a computational experiment.
Keywords: 3D printer, screw dispenser drive, print head, concrete mix, transfer function, proportional-integral-differentiating controller, neuro-fuzzy output system