×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Selection of optimal parameters of the method of segmentation of digital images of sputum

    The article considers the application of criteria for assessing the quality of segmentation of digital images of sputum stained by the method of Ziehl–Neelsen to select the optimal parameter "Sigma" wavelet transform Mexican Hat. 830 digital images obtained by sputum smear microscopy were used as the study material. To assess the optimal selection of the parameter σ, we used the average number of objects selected in the images, the proportion of missed acid-resistant mycobacteria in the images, the homogeneity criterion and 3 complex criteria for assessing the quality of image segmentation. The analysis showed that with an increase in the parameter σ there is a slight decrease in the value of the homogeneity criterion. At the same time, the parameter σ increases from 2.4 and more according to the complex criteria, and the image segmentation quality improves. Thus, the most optimal values of the σ parameter of the Mexican Hat wavelet for segmentation of digital images of sputum stained by the cyl-Nielsen method are values in the range from 2.90 to 3.09.

    Keywords: method Ziehl-Nielsen, image segmentation, quality evaluation criteria, wavelet transform, Mexican Hat

  • Comparison of methods of selection of signs for identification of objects on digital images of microscopic preparations

    The comparison of different methods of selection of signs for identification of objects on digital images of microscopic preparations of sputum, colored by the method of tsilya-Nilsen. The following methods were considered: the method of intersections, Shannon, kulbaka and accumulated frequencies. It is concluded that the method of intersections allows the selection of features from the entire feature space so that the classification models allow to obtain the maximum accuracy of classification with the least number of input parameters.

    Keywords: method Ziehl-Nielsen, object recognition, image recognition, selection of features, the method of cumulative frequencies, the method of Shannon, Kullback, the method of intersections, logistic regression, classification tree, discriminant analysis