×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Automation of structural calculations of wooden light-framed buildings

    In connection with the revival of interest in wooden housing construction in Russia, the creation of specialized software systems for the calculation and design of buildings and structures made of wood is becoming relevant. One of the most popular systems in the world is light-frame housing construction. As one of the possible tools for automated design of light-frame wooden buildings, this article presents the FrameCAD program, developed at the Department of Metal, Wood and Plastic Structures of the Don State Technical University. Some of its capabilities are presented, allowing you to design wall fences of light-frame buildings, beamed wooden floors, perform calculations of individual frame elements taking into account the requirements of current regulatory documents and automatically generate albums of drawings of wooden structures in the domestic NormCAD program, as well as specifications for them factory made. FrameCAD has been tested in the design of a number of objects. The software product is developed by engineers who have many years of experience in the actual design and construction of light-frame buildings. It continues to be improved and supplemented, and in the future it may become a replacement for similar foreign complexes.

    Keywords: wooden structures, software package, wall panels, beam overlap, automated calculation

  • Experience in using metal-wood structures of religious buildings frames

    The Russian Federation is a multi-religious state, which has recently seen an increase in the construction of various religious buildings. At the same time, the bulk of the churches being built are small buildings, located, as a rule, in villages and small towns and designed for simultaneous visits by up to 120-150 parishioners. Various materials are used for their construction, including wood. Usually these are log or block buildings, but it is also possible to use other wooden housing construction systems, including light frame ones. The theoretically possible remoteness of towns and villages from large district and regional centers, the impossibility of delivering large-sized beams and logs, the lack of their own production base and other factors lead to the need to use ordinary boards in wooden frame structures. As an example, we consider the construction of the Church of the Transfiguration of the Lord in one of the farms in the Rostov region, the load-bearing structures of which are made using light-frame house-building technology. The presence of open space in the central part of the Temple and the placement of an octagon-shaped superstructure above it required the use of a supporting structure made of steel I-beams. Thus, the structure of the Temple frame is a metal-wood system. The article shows that the combined use of steel and wood in light-frame buildings ensures a rational organization of the space of religious buildings.

    Keywords: religious building, temple, belfry, octagon, narthex, altar, wood, light frame building, beam, I-beam, supporting structure

  • Technical and economic assessment of the feasibility of use trusses of the “Molodechno” type in the coverings of industrial buildings

    Steel roof trusses are the main type of load-bearing structures used in the roofing of industrial buildings. Among them, trusses of the “Molodechno” type have become widespread, in which closed bent-welded profiles of square and rectangular cross sections are used as rods. The use of this type of rolled product makes it possible to create structures without gussets and connecting strips, with a maximum degree of process automation, which significantly reduces labor intensity and reduces the cost of their production. Another feature of the coatings under consideration is their non-running solution. The trusses are located in 4m increments, supported by rafter structures. However, in such a situation, the loads on the truss and the forces in the elements are small, and therefore, and also taking into account the limited range of bent-welded profiles, understressing of the truss elements and excessive consumption of metal are likely. Three variants of coatings with different pitches of trusses were considered, and the metal consumption per square meter of coating was determined. It has been proven that with increasing pitch of trusses, the metal consumption of coatings decreases.

    Keywords: "Molodechno", rafter truss, sub-rafter truss, continuous purlin, lattice purlin, truss pitch, metal consumption

  • Constructive solutions of wooden buildings and structures from rounded logs and beams

    A constructive solution of the walls of wooden houses from round logs or a profiled beam, which is installed vertically (wooden element) is considered. It is proposed to arrange two longitudinal milled grooves of a rectangular shape located in the diametral plane of the section of the log for the installation of sheet plywood keys, which makes it possible to include in the joint work adjacent contiguous elements when working on bending from the plane of the wall. The variant of the strapping device, it is proposed to use metal rolling profiles of Channel and I-sections, connected with metal tube elements (box section) mounted in the corners of the frame.

    Keywords: round log, profiled beam, sheet plywood keys, tubular section elements

  • On one method of shaping constructive networks of polytopic inconspicuous domes

    A method for the formation of spatial configurations in the form of semiregular polyhedra is described. The algorithm of geometrical calculation allowing to determine the coordinates of nodes of constructive networks of polyhedral hemispherical domes, edge lengths, and the size of triangular faces is given. Spatial configurations in the form of 20-, 80-, 320-, and 1280-grannikov were obtained. The results are illustrated by two projections of the above-mentioned polyhedra. Geometrical schemes of sectorial parts of hemispherical domes on cutting of 320- and 1280-grannikov with designation of typical units and triangular panels are given.

    Keywords: icosahedron, edge, face, hemisphere, duplication, sectorial part, polyhedron, dome, size, triangular panel