×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Dynamic-mechanical characteristics of composites based on styrene-isoprene-styrene block copolymers, polybutyl methacrylate and thermoplastic polyurethane

    The paper studies the dynamic-mechanical characteristics of styrene-isoprene-styrene, polybutyl methacrylate, thermoplastic polyurethane block copolymers and their blends by dynamic mechanical analysis. It is found that blending of several types of polymers allows to extend the range of effective vibration absorption. A combination of polymers with high damping properties over a wide temperature-frequency range was determined. The influence of vibration frequency on dynamic-mechanical properties of composites has been investigated.

    Keywords: polymer composite material, dynamic mechanical analysis, polybutyl methacrylate, thermoplastic polyurethane, styrene-isoprene-styrene block copolymer, vibration absorption, damping material, glass transition temperature

  • Study of the effect of octyl phenol formaldehyde resin on the dynamic mechanical properties of vibration-absorbing materials based on butyl rubber

    Vulcanization is a technological process that transforms plastic rubber into rubber. As a result of vulcanization, the shape of the product is fixed, and the material becomes more durable, hard and elastic. The purpose of the article is to determine the effect of octyl phenol-formaldehyde resin on the vulcanization parameters and to identify its optimal amount for the development of vibration-absorbing materials based on butyl rubber. The effect of a vulcanizing agent (octyl phenol formaldehyde resin) on the properties of the rubber compound during vulcanization was established. As a result of the study, the kinetics of vulcanization and the effect of various components on the properties of the rubber compound, such as elongation at break, conditional tensile strength and specific damping ability, were studied. This study is conducted in order to find the optimal rubber for placement in a seismic damper used in buildings and structures.

    Keywords: vulcanizing group, vibration absorbing material, butyl rubber, rubber compound, vulcanization, octyl phenol formaldehyde resin, seismic damper

  • Influence of compressive force on the characteristics of a viscoelastic material

    Currently, one of the most promising and cost-effective methods of seismic isolation is the use of passive energy dissipation systems. The research carried out in this article focuses on the use of a new hybrid energy dissipation device that combines a parallel layer of an inexpensive viscoelastic material and a metal component. Typically, the viscoelastic material in such systems is attached to steel shock absorbers with an adhesive. In this article, the behavior of a viscoelastic material is studied when it is attached to a metal component without the use of glue, being held only by friction and pressure. The influence of the compression force on the elastic and damping properties of a viscoelastic material arranged in a seismic damper has been established, and the pressing force has been determined, which ensures the optimal functional properties of the viscoelastic material.

    Keywords: earthquake, seismic safety, damper, thermal expansion, viscoelastic material, rubber compound, rubber, resin, polymer, vibration, seismic isolation