Reducing the risk of human-made disasters is directly related to the trouble-free operation of nuclear power plants. Analysts name the human factor like a one of the causes of accidents at the nuclear power plants, which mainly determines both the probability of their occurrence and the consequences. Minimizing of the human factor impact suggests a number of actions, including automation and digitalization, the applying of which on the plant is impossible without of mathematical models of technological processes. A simulation model of a digital automatic control system (SAR) of pressure in a pressure compensator used to maintain pressure in the first circuit of the nuclear power plant is presented in this article. As a result of modeling are the charts of transition process which are used for calculating of the digital ACS quality indicators. The ACS simulation model is implemented in a classical way, but in practice such classical regulators do not provide the predefined quality indicators. In this connection, a model of adaptive ACS with a neuroregulator is proposed to improve the qualitative characteristics of the system.
Keywords: nuclear power plant, reactor, compensator, pressure, temperature, perturbation, regulator, valve, gate valve, turbine, model, circuit, neural network, optimization.
The water-chemical condition of the steam generators (SG) within the established limits are supporting by a purge. The purge is two kinds they are permanent and periodic. The main idea of the purge consists in taking part of the boiler water from the places of the most likely accumulation of sludge, corrosion products, salts, as well as water purification and its subsequent return to the circuit. The further way of boiler water which is taken from SG is the purge expander. The thermal-hydraulic sketch which is shown in the article and considered to be a mathematic model of the purge expander illustrated level changes in dynamic. Also the mathematic model of automatic control system for purge expander level control which includes a fuzzy governor is presented in the article. Both models are realized with use of software for technique system modelling called SimInTech. The technique implementation of level governor in the SG purge expander realized on the base of the standard software and hardware TPTS-EM which is used as grassroots automation for automatic control system in the technological process of NPP having water-water power reactor which power is 1000 megawatt.
Keywords: reactor, purge, steam generator, corrosion, erosion abrasion, heat carrier, purge expander, governor, model, fuzzy logic, level, pressure, consumption