Применение моделей машинного обучения для прогнозирования исполнения государственных контрактов
Аннотация
Дата поступления статьи: 04.08.2024В работе проанализированы существующие подходы к прогнозированию исполнения контрактов, включая традиционные статистические модели и современные методы на основе машинного обучения. Проведен сравнительный анализ различных алгоритмов машинного обучения, таких как логистическая регрессия, деревья решений, случайный лес и нейронные сети, для выявления наиболее эффективных моделей прогнозирования. В качестве исходных данных использовалась обширная база информации о государственных контрактах, включающая информацию о подрядчиках, условиях контрактов, сроках исполнения и других значимых факторах. Разработан прототип интеллектуальной системы прогнозирования, проведено тестирование на реальных данных, а также оценка точности и надежности получаемых прогнозов. Результаты исследования показывают, что применение методов машинного обучения позволяет значительно повысить качество прогнозирования исполнения государственных контрактов по сравнению с традиционными подходами.
Ключевые слова: интеллектуальная система, математическое моделирование, государственные закупки, государственные контракты, программный комплекс, прогнозирование, машинное обучение
2.3.6 - Методы и системы защиты информации, информационная безопасность
5.2.2 - Математические, статистические и инструментальные методы в экономике
.