ivdon3@bk.ru
работа посвящена поиску оптимального конструктивного решения колонн 16-ти этажного монолитного железобетонного жилого здания с минимальной стоимостью материалов. Современный подход к конструктивному решению высотных зданий предполагает многополярность на этапе конструирования. Отвечая современным требованиям, определяемым потребностями человека, долговечностью и функциональностью жилья и другими параметрами, отмечается и существенное значение экономических показателей. Особый подход к этапу проектирования в качестве попытки рассмотреть детально подготовительный этап (выбор сечения и класса бетона колонн в зданиях из монолитного железобетона) оправдан актуальностью рассматриваемой в статье проблемы.
Ключевые слова: железобетонные колонны, расчёт каркаса, Лира-САПР, варьирование класса бетона, оптимальное проектирование железобетонных конструкций, расчёт 16-этажного здания
05.23.01 - Строительные конструкции, здания и сооружения (технические науки)
В статье рассмотрены результаты расчёта арматуры в монолитных железобетонных перекрытиях. Предметом исследования является арматура участка плиты, расположенного рядом с колонной. Исследование выполнялось путём постановки вычислительного эксперимента. Моделирование выполнялось в программных комплексах: Revit, Сапфир и Лира-САПР. Приведены характеристики образцов (конечноэлементных схем) вычислительного эксперимента и основные результаты их расчёта в среде ПК Лира-САПР. Установлено, что для наиболее правильного и экономичного подбора арматуры в моделях без АЖТ шаг триангуляции в плите желательно принять равным стороне сечения колонны или несколько больше, но не более чем на 15%. При использовании АЖТ область плиты вблизи узла следует моделировать конечными элементами с шагом триангуляции равным половине стороны поперечного сечения колонны.
Ключевые слова: BIM технология, железобетон, перекрытие, триангуляция, конечный элемент, подбор арматуры, Revit, Сапфир, Лира-САПР
05.13.18 - Математическое моделирование, численные методы и комплексы программ ,
Рассмотрен расчет многоэтажного монолитного здания стеновой конструктивной схемы на устойчивость к прогрессирующему обрушению. Произведены расчеты здания для различных условий эксплуатации: нормальные и экстремальные (аварийное воздействие — разрушение части несущих стен первого этажа). Даны рекомендации по защите здания при аварийных воздействиях. Определено, что для зданий с перекрестно-стеновой системой целесообразным методом защиты от прогрессирующего обрушения является метод резервирования прочности несущих элементов. Увеличение стоимости материалов при этом составляет около 2 %. Сравнение технико-экономических показателей зданий стеновой и каркасной конструктивных схем показало, что стоимость защиты от прогрессирующего обрушения у зданий со стеновой конструктивной схемой значительно ниже, чем у каркасных
Ключевые слова: прогрессирующее обрушение, аварийное воздействие, резервирование прочности, перекрестно-стеновая конструктивная схема, Лира-САПР, расчётная модель здания
В статье рассмотрены результаты расчёта монолитных безбалочных перекрытий. Конечноэлементные модели создавались в Rewit Сапфир и Лира-САПР. Приведено описание методики создания компьютерных моделей план вычислительного эксперимента и основные параметры рассчитанных опытных образцов. Всего было рассчитано четыре серии образцов, отличающихся способом создания модели. В каждой серии реализованы все доступные способы триангуляции. Для сопоставимости результатов шаг триангуляции в каждой из серий принимался одинаковым: 0.17, 024, 0.4, 0.46, 0.55, 0.67 и 0,86 м. Авторами выполнен сравнительный анализ качества схем после их импорта в ПК Лира-САПР. Всего было выполнен анализ 63 схем. Установлено, что при экспорте схем из разных ПК такие данные как материалы, жесткости элементов и нагрузки передаются не всегда корректно, что вынуждает выполнять детальную проверку схемы и её корректировку вручную.
Ключевые слова: BIM технология, железобетон, безбалочное перекрытие, арматура, триангуляция, конечный элемент, подбор арматуры, вычислительный эксперимент, Rewit, Сапфир, Лира-САПР
05.13.06 - Автоматизация и управление технологическими процессами и производствами (по отраслям) ,
В статье произведен сравнительный анализ армирования монолитной железобетонной плиты при различных условиях расчёта: без учёта сейсмики, с учётом проектного землетрясения (ПЗ) и с учётом максимального расчётного землетрясения (МРЗ). Получено, что учёт сейсмичности 9 баллов без применения методов активной сейсмозащиты приводит к увеличению армирования плиты на 28 % при учёте ПЗ и на 81 % при расчёте на МРЗ. Кроме того, выполнен анализ работы инструмента «Расход бетона и арматуры» в ПК Лира-САПР. Получен поправочный коэффициент для перехода от теоретического расчётного армирования к фактическому: он составил от 2,4 до 3,0
Ключевые слова: сейсмическое воздействие, Лира-САПР, расчёт на МРЗ, расчёт каркаса, плита перекрытия, железобетон, удельный расход арматуры
В статье рассмотрены результаты анализа методик расчёта плоских плит безбалочных перекрытий на продавливание по Российским и зарубежным нормам проектирования. Установлено, что в рассмотренных методиках расчёта на продавливание использованы схожие расчётные модели и учтены одинаковые силовые факторы. Учёт влияния моментов осуществляется по-разному: либо путём введения в расчётную модель касательных напряжений, либо введением эмпирического коэффициента. Не одинаков подход и к назначению геометрических параметров расчётного (критического) контура. Установлено, что работа узла сопряжения безбалочной плиты с колонной изучена пока не в полной мере и требуются дополнительные исследования по обобщению методик расчёта.
Ключевые слова: железобетон, каркас, безбалочное перекрытие, арматурные работы, рабочая высота сечения, защитный слой бетона, смещение арматуры, подбор арматуры, ПК ЛИРА-САПР
На сегодняшний день в строительстве применяются новые методы возведения зданий и сооружений, а также самые передовые прочные и легкие материалы с высокими эксплуатационными характеристиками. Все это позволяет строить экономичные, качественные и эстетически привлекательные дома. В зависимости от применяемых материалов при строительстве многоэтажных зданий была рассмотрена эффективность применения ребристых кессонных перекрытий. Расчет 18-этажного монолитного здания был произведен в программном комплексе «Лира-САПР-2013». Плита перекрытия типового этажа рассматривается в следующих вариантах схем: здания с шагом колонн 6м и 12м, перекрытие плоское 200мм и кессонное с плитой 50мм, отличающееся сечением балок (200х400мм и 200х450мм), шагом 900х900 мм. Анализ результатов показал, что наиболее выгодное применение кессонных перекрытий в здании с шагом колонн 12 м, с применением высокопрочного бетона и арматуры класса А500.
Ключевые слова: кессонное перекрытие, плита, балка, арматура, бетон, анализ, расход, армирование, шаг колонн, стоимость возведения, конструктивная схема
В данной статье на примере 20-этажного жилого здания в городе Ростове-на-Дону продемонстрирована эффективность применения высокопрочных бетонов для проектирования железобетонных колонн. Представлены результаты расчета колонн из бетона разных классов прочности. Представлены колонны в двух вариациях. Первый: 600х600 В25 – со второго подземного по десятый этаж, 500х500 В25 – с одиннадцатого по двадцатый этаж; второй: 500х500 В60 – со второго подземного по седьмой этаж, 400х400 В60 – с восьмого по одиннадцатый, 400х400 В25 – с двенадцатого по двадцатый. Анализ результатов исследования показал технико-экономическую эффективность применения бетонов высоких классов прочности (в частности, бетона класса В60) за счет повышения прочностных характеристик сжатых элементов, уменьшения размеров поперечного сечения и веса колонн, экономии арматуры, обусловливающих сокращения стоимости элементов в целом.
Ключевые слова: высокопрочный бетон, сжатые элементы, строительство высотных зданий, колонна, Лира-САПР, расчёт конструкций
В статье рассмотрены результаты количественной оценки снижения прочности безбалочных монолитных железобетонных перекрытий вследствие увеличения толщины защитного слоя бетона против проектной величины. В статье анализируются данные, полученные как для опорных, так и для пролётных сечений. Всего было рассчитано четыре серии образцов, отличающихся классом бетона (В15, В20, В25 и В30). Каждая серия состояла из 9 образцов, имеющих различную рабочую высоту сечения в опорном и пролётном сечениях. Рабочая высота сечения изменялась от 5 до 22%. Конечно-элементная модель создавалась в среде ПК ЛИРА-САПР. В процессе анализа исследовалось влияние изменения рабочей высоты сечения на площадь опорной и пролётной арматуры, подобранной по прочности. Установлено, что степень влияния отклонений положения арматуры от проектного в опорных сечениях и в пролёте различна. Наибольшую опасность представляют опорные сечения, то есть участки перекрытия, расположенные в местах опирания перекрытия на колонны. Установлено также, что степень влияния зависит так же от класса бетона по прочности на сжатие.
Ключевые слова: железобетон, каркас, безбалочное перекрытие, арматурные работы, рабочая высота сечения, защитный слой бетона, смещение арматуры, подбор арматуры, ПК ЛИРА-САПР
В статье рассмотрены результаты вычислительного эксперимента, выполненного в среде Лира-САПР. Цель выполненного эксперимента – модальный анализ различных конструктивных схем многоэтажного железобетонного каркаса при пульсационном и сейсмическом воздействиях. Было рассчитано три серии образцов, отличающихся соотношением жесткостей рамной и диафрагменной частей схемы (от 20 % до 65,9 %). Расчёты выполнялись для сейсмичности 7, 8 и 9 баллов и грунтов 1, 2 и 3 категории по сейсмичности. Установлено, что соотношение жесткостей влияет на распределение модальных масс. Ускорения узлов покрытия от соотношения жесткостей не зависят - они возрастают с увеличением сейсмичности площадки. Соотношение жесткостей влияет на суммарный расход арматуры плит перекрытий. Это влияние существенно в диапазоне значений соотношения от 20,5% до 42,5%. Дальнейшее увеличение соотношения жесткостей на расход арматуры влияет незначительно.
Ключевые слова: сейсмичность, категория грунтов по сейсмическим свойствам, модальный анализ, жесткость, подбор арматуры, ПК Лира-САПР
В статье рассмотрены результаты расчета различных вариантов сетки конечных элементов, генерируемой средствами ПК САПФИР. Узел опирания плиты на колонну моделировался как с использованием абсолютно жесткого тела, так и без него. Шаг триангуляции варьировался в пределах от 1/35 до 1/5 пролета. Предметом анализа выбрана площадь нижней продольной арматуры в середине пролета. Установлено, что не зависимо от типа и шага триангуляции использование абсолютно жестких тел ведет к снижению требуемой расчетом арматуры в среднем на 6 %. Также определено, что тип и шаг триангуляции, использованные в ПК САПФИР существенного влияния на результат подбора пролетной арматуры, не оказывают. Этот результат получен для схем, в которых обязательно есть конечные элементы, центры тяжести которых располагаются в середине пролета, к чему и нужно стремиться при проектировании.
Ключевые слова: монолитный каркас, безбалочное перекрытие, триангуляция, подбор арматуры, расчет конструкций, ПК САПФИРmonolithic framework, girderless floor, triangulation, selection of armature, calculation of constructions, programmatic complex SAPPHIRE
Конечной целью деятельности деревоперерабатывающего предприятия является получение дохода от использования лесных ресурсов. Для достижения нормального уровня рентабельности недостаточно одной оценки таксационных показателей лесного участка. В данной статье рассмотрена методика оценки экономической доступности лесных ресурсов, основанная на анализе всех ключевых факторов, таких как: себестоимость лесозаготовки, транспортная доступность, стоимость создания необходимой инфраструктуры. Проведено исследование лесозаготовительного процесса одного из крупнейших деревоперерабатывающих предприятий отечественного лесопромышленного комплекса на предмет доступности лесных ресурсов. Сделаны выводы об уровне доступности каждого лесозаготовительного участка, даны рекомендации относительного тактического и стратегического планирования в области повышения экономической доступности лесных ресурсов.
Ключевые слова: экономическая доступность, лесные ресурсы, технология лесозаготовок, себестоимость лесозаготовок, эффективность, лесозаготовительное предприятие
05.13.01 - Системный анализ, управление и обработка информации (по отраслям) , 08.00.05 - Экономика и управление народным хозяйством (по отраслям и сферам деятельности)
В статье рассмотрены результаты подбора арматуры монолитных железобетонных безбалочных перекрытий, отличающихся параметрами сетки конечных элементов, при прочих равных характеристиках. Конечно элементная модель создавалась средствами ПК САПФИР с последующей передачей аналитической модели в ПК ЛИРА-САПР. В процессе анализа исследовалось влияние параметров автоматической триангуляции сетки конечных элементов на площадь опорной арматуры. Установлено, что увеличение шага триангуляции ведет к снижению требуемой по расчету площади верхней продольной арматуры. Это снижение может достигать 85%, и в случае недостаточного контроля качества сетки конечных элементов это станет причиной серьезной ошибки в расчете. При автоматической генерации сетки размер конечного элемента может значительно превышать шаг триангуляции. Во всех сетках с зоной перехода от АЖТ к плите в виде треугольников наблюдается эффект увеличения требуемой по расчету арматуры по мере отдаления от грани колонны, что на наш взгляд нелогично. Практическую ценность, как наиболее простой способ, имеет вариант разбиения плиты на прямоугольные конечные элементы с размером равным или немного большим чем сечение колонны без использования абсолютных жестких тел.
Ключевые слова: Монолитный каркас, безбалочное перекрытие, триангуляция, подбор арматуры, расчет конструкций, ПК САПФИР, ПК ЛИРА-САПР
При разбиении безбалочных плит на конечные элементы без использования абсолютно жестких тел с увеличением размера конечного элемента площадь требуемой по расчету опорной арматуры уменьшается, а пролетная арматура от размера конечных элементов не зависит. При использовании в узле сопряжения плиты с колонной абсолютно жесткого тела пролетная арматура уменьшается на 5 - 7%. При применении абсолютно жесткого тела с зоной перехода к полю плиты в виде треугольников в результатах расчета наблюдается увеличение требуемой по расчету арматуры по мере отдаления от грани колонны, что нелогично. Создание зон перехода из прямоугольных конечных элементов улучшает решение, но усложняет схему. Практическую ценность имеет вариант разбиения плиты на конечные элементы с размером равным сечению колонны без использования абсолютных жестких тел.
Ключевые слова: безбалочное перекрытие, монолитный каркас, расчет конструкций, Лира-САПР
В статье рассмотрен пример расчета конструкций многоэтажного монолитно-каркасного жилого дома на «прогрессирующее» обрушение. Предложено два варианта моделирования «прогрессирующего» обрушения: линейный расчет с удалением одной колонны и последующий подбор арматуры и расчет с учетом физической нелинейности с использованием шагово-итерационного метода. Результаты, полученные в процессе расчетов, свидетельствуют о том, что предложенная методика прочностного расчета конструкций, учитывающая физическую нелинейность материалов, позволяет оценить реальную живучести здания при аварийной ситуации и получить более экономный расход материалов по сравнению с «традиционным» линейным расчетом
Ключевые слова: прогрессирующее обрушение, жизненный цикл, компьютерное моделирование, конструктивные элементы, нелинейный расчет, устойчивость, физическая и геометрическая нелинейность, шаговый метод