ivdon3@bk.ru
Предлагается новый метод блочного распознавания инвентарных номеров железнодорожных подвижных единиц, основанный на использовании комитетной нейроиммунной модели классификации. Преимуществом использования такого подхода является отсутствие необходимости формирования выборки отрицательных примеров. Разработанный метод объединяет в себе этапы сегментации и классификации, что позволяет достичь повышенной устойчивости к шуму, возможности сегментации размытых и слипшихся цифр номера, имеющих разные шрифты и начертания, а также инвариантности к существующим изменениям масштаба. Благодаря редукции данных, достигаемой за счет применения механизма иммунной кластеризации, появляется возможность постоянного пополнения обучающей выборки комитета классификаторов новыми статистическими данными для последующего повышения точности классификации. Метод реализован в программном обеспечении системы автоматического распознавания номеров вагонов (АРНВ), которая находится в эксплуатации на сети дорог ОАО «РЖД».
Ключевые слова: Метод блочного распознавания символов, комитетная нейроимунная модель классификации, идентификация, автоматическое распознавание номеров вагонов, дублирующий номер
05.13.18 - Математическое моделирование, численные методы и комплексы программ
Сведения об авторах выпуска №1 (2014)
Ключевые слова: авторы