ivdon3@bk.ru
В статье рассматривается модель оценки показателей эффективности обмена информационными ресурсами в корпоративных системах, предназначенная для анализа возможности систем с распределенным реестром обеспечить своевременность и полноту информационного обмена. В качестве основного показателя предлагается учитывать вероятность отказа сегмента корпоративной системы для каждой эпохи. Для нахождения этого показателя используются вероятностные оценки сумм, ограниченных сверху гипергеометрическим и биномиальным распределениями с вероятностными границами Чебышева, Хеффдинга и Шватала. Проведен численный и сравнительный анализ предложенных оценок.
Ключевые слова: технология распределенного реестра, информационная система, сегментирование, цепочка блоков
05.13.18 - Математическое моделирование, численные методы и комплексы программ
В статье рассматривается методика обеспечения своевременности и полноты обмена информационными ресурсами в корпоративных сетях, построенных на основе технологии распределенного реестра, которая учитывает вариативность стратегии поведения системы распределенного реестра при информационном обмене. Методика учитывает нештатные функции, такие как формирование ответвления обрабатываемых данных и воздействия злоумышленника, а также позволяет определить среднее значение времени задержки генерации блока путем корректировки числа операций, необходимых для решения блока. Применение данной методики позволяет повысить значение показателя своевременности и полноты обмена информационными ресурсами в корпоративной сети на 30% по сравнению с существующей системой информационного обмена.
Ключевые слова: технология распределенного реестра, корпоративная сеть, информационные ресурсы
05.13.18 - Математическое моделирование, численные методы и комплексы программ
Статья посвящена проблеме теоретического исследования и разработки солнечных элементов на основе перовскитов для оптимизации их конструкции и увеличения коэффициента полезного действия. В работе представлено численное моделирование переноса и накопления носителей заряда в планарной p-i-n гетероструктуре солнечного элемента. В основу моделирования положена стационарная физико-топологической модель, базирующаяся на диффузионно-дрейфовой системе уравнений полупроводника. Получены коэффициенты полезного действия солнечных элементов при различной толщине пленки перовскита. Установлено, что максимальный коэффициент полезного действия оптимизированной конструкции солнечного элемента составляет порядка 27 % при толщине пленки перовскита 500-700 нм и концентрации дефектов в ней порядка 1012 см-3.
Ключевые слова: Численное моделирование, солнечный элемент, перовскит, толщина пленки, концентрация дефектов, вольт-амперная характеристика
01.04.10 - Физика полупроводников , 05.13.18 - Математическое моделирование, численные методы и комплексы программ
Проведено численное моделирование распределения температуры при нагреве (отжиге) импульсным Nd:YAG лазером пленки аморфного кремния (a-Si) на поверхности AZO-стеклянной подложки. Моделирование осуществлялось на основе численного решения уравнения теплопроводности в программе Matlab для определения плотности энергии лазерного излучения необходимой для кристаллизации пленки a-Si. Для длины волны 1064 нм получено, что температура на поверхности пленки a-Si достигает максимальной величины в момент времени 146 нс при лазерном импульсе с Гауссовой временной формой. Показано, что для кристаллизации пленки a-Si толщиной порядка 800 нм лазерным излучением с наносекундной длительностью импульса оптимальная плотность энергии составляет 600-700 мДж/см2, когда температура по толщине пленки a-Si соответствует 550-1250 °C.
Ключевые слова: Численное моделирование, лазерный отжиг, распределение температуры, пленка a-Si, солнечный элемент
01.04.10 - Физика полупроводников , 05.13.18 - Математическое моделирование, численные методы и комплексы программ , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
В данной работе произведено численное исследование оптимизированной формы тела минимального аэродинамического сопротивления. Вычислительный эксперимент предполагает переход от изучения реального объекта к изучению его математической модели, для исследования таких процессов, натурное исследование которых невозможно, по каким-либо причинам затруднено или дорого. Условиями сравнения форм тел в вычислительном эксперименте являются сохранение постоянными для всех тел: объема и формы рабочей зоны; расстояния от истоков, стоков и центров тел; скорости газового потока; массы тел и прочих второстепенных характеристик помимо только самой формы поверхности.
Ключевые слова: аэродинамическое сопротивление, оптимизированная форма тела, численное моделирование, вычислительный эксперимент, температурное поле, конвективный теплоперенос
05.13.18 - Математическое моделирование, численные методы и комплексы программ
Проведено численное физико-топологическое моделирование для оптимизации толщины перовскитовых солнечных элементов на основе гетероструктуры TiO2/CH3CN3PbI3-xClx/Spiro-OMeTAD. Результаты проведенных исследований показали, что оптимальные значения толщин пленок TiO2 и CH3CN3PbI3-xClx гетероструктуры, позволяющие получить высокий коэффициент полезного действия солнечного элемента, лежат в относительно узких пределах. Проведенные исследования показали возможность эффективного использования численного физико-топологического моделирования для разработки перовскитовых солнечных элементов с учетом особенностей фотогенерации, рекомбинации и переноса носителей заряда в реальных гетероструктурах.
Ключевые слова: Солнечный элемент, перовскит, диоксид титана, гетероструктура, численное моделирование.
01.04.10 - Физика полупроводников , 05.13.18 - Математическое моделирование, численные методы и комплексы программ , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
В работе произведено исследование эффективности теплоотводящей поверхности объемного тела с внутренним источником тепла. Подобран электростатический аналог распределения теплового поля. Предложена модель конвективного потока, при определенных начальных и граничных условиях переходящего в отвод тепла теплопроводностью среды. Сделан вывод о неэффективности выполнения теплоотводящей поверхности в виде штыревых, оребренных и прочих конструкций существующих теплоотводов, увеличивающих только массу, технологическую сложность изготовления, тепловое сопротивление и температуру теплонагруженного элемента.
Ключевые слова: Температурное поле, конвективный теплоперенос, эффективная площадь теплоотвода, электростатический аналог, теория подобия
01.04.10 - Физика полупроводников , 05.13.18 - Математическое моделирование, численные методы и комплексы программ , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
Проведены теоретические исследования распределения температуры при лазерном нагреве пленки прекурсора TiO2 на поверхности FTO/стеклянной подложки. Моделирование осуществлялось на основе численного решения уравнения теплопроводности в программе Matlab для определения плотности энергии лазерного излучения необходимой для кристаллизации TiO2. Показано, что на поверхности прекурсора TiO2 температура достигает максимального значения в момент времени 133 нс при Гауссовой временной форме лазерного импульса. Оптимальная плотность энергии для кристаллизации пленки прекурсора TiO2 при использовании наносекундной длительности импульса составляет 1,3-1,6 Дж/см2, когда температура по толщине пленки соответствует 400-500 °C. Полученные результаты моделирования согласуются с экспериментальными исследованиями.
Ключевые слова: численное моделирование, лазерный нагрев, распределение температуры, пленка TiO2, солнечный элемент
01.04.10 - Физика полупроводников , 05.13.18 - Математическое моделирование, численные методы и комплексы программ , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
В работе произведено исследование распределения температуры от точечного источника тепла при конвективном теплопереносе. Численно решено уравнение Навье-Стокса, описывающее установившееся двумерное ламинарное движение жидкости. Получено распределение температурного поля теплонагруженного точечного источника при соответствующих граничных условиях, дополненных краевыми условиями равенства нулю скорости потока на стенках параболоида при помощи численного интегрирования методом контрольного объема.
Ключевые слова: Температурное поле, конвективный теплоперенос, уравнение Навье-Стокса, численные методы решения дифференциальных уравнений
01.04.10 - Физика полупроводников , 05.13.18 - Математическое моделирование, численные методы и комплексы программ , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
Тонкие пленки TiO2 широко используются в качестве прозрачного слоя n-типа проводимости в перовскитовых солнечных элементах. Нанокристаллические пленки TiO2 наносились на поверхность стеклянных подложек, покрытых оксидом олова с фтором (FTO), методом центрифугирования и последующего лазерного отжига излучением с длиной волны 1064 нм. Исследовалось влияние лазерного отжига на размер зерна в пленке TiO2 и скорости центрифугирования на её толщину. Установлено, что диаметр зерна в полученных пленках TiO2 составляет в среднем 17-64 нм при мощности лазерного отжига 30-70 Вт. Получено, что толщина пленок TiO2 изменяется в диапазоне 72-124 нм от скорости центрифугирования. Оптимальные параметры тонкой пленки TiO2, полученной с использованием лазерного отжига, могут способствовать повышению коэффициента полезного действия перовскитовых солнечных элементов.
Ключевые слова: тонкая пленка, TiO2, центрифугирование, лазерный отжиг, морфология поверхности, толщина
01.04.07 - Физика конденсированного состояния , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
Нанокристаллические пленки TiO2 используются в качестве прозрачного слоя n-типа проводимости в перовскитовых солнечных элементах. В работе представлено численное диффузионно-дрейфовое моделирование процессов переноса и накопления носителей заряда в гетероструктуре TiO2 / перовскит / полупроводник p-типа. В основу моделирования положена стационарная физико-топологической модель, базирующаяся на диффузионно-дрейфовой системе уравнений полупроводника и позволяющая моделировать перовскитовые солнечные элементы с различными электрофизическими и конструктивно-технологическими параметрами. Получены фотоэлектрические характеристики данных солнечных элементов и построена зависимость коэффициента полезного действия от толщины пленки TiO2. Установлено, что оптимальная толщина пленки TiO2 составляет 50-100 нм, что способствует повышению коэффициента полезного действия перовскитовых солнечных элементов.
Ключевые слова: Cолнечный элемент, тонкая пленка, диоксид титана, p-i-n структура, численное моделирование
01.04.10 - Физика полупроводников , 05.13.18 - Математическое моделирование, численные методы и комплексы программ , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
Создана однокаскадная модель кремниевого солнечного элемента с использованием программы PC1D v.5.9, предназначенной для моделирования фотоэлектрических устройств. В процессе моделирования изменялись уровень легирования и толщина фронтального n+-слоя, а также применялось текстурирование фронтальной поверхности. Показано влияние уровня легирования и толщины n+-слоя на фотоэлектрические характеристики солнечных элементов. Определено, что с увеличением уровня легирования и толщины фронтального n+-слоя происходит снижение КПД солнечных элементов. Получено, что использование текстурирования фронтальной поверхности приводит к увеличению КПД и связано со снижением потерь на отражение и увеличением фототока.
Ключевые слова: Кремниевый солнечный элемент, толщина, уровень легирования, текстурирование, вольт-амперная характеристика
01.04.07 - Физика конденсированного состояния , 05.13.18 - Математическое моделирование, численные методы и комплексы программ , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
Проведено исследование морфологии поверхности и удельной электропроводности нанокристаллической пленки кремния на стеклянной подложке от мощности лазерного отжига. Лазерный отжиг осуществлялся Nd:YAG лазером с длиной волны 532 нм, скоростью перемещения предметного столика с образцом 5 мм/с и мощностью лазерного излучения в пределах от 34 до 86 Вт. Лазерный луч фокусировался на образце в виде узкой линии шириной 10 мкм и длиной 60 мм. Определены зависимости размера нанокристаллов и удельной электропроводности пленок кремния от мощности излучения лазерного отжига. Показано, что мощность лазерного излучения в диапазоне от 60 до 70 Вт является оптимальной для получения наилучших электрофизических параметров кремниевой пленки с целью её использования в высокоэффективных тонкопленочных солнечных элементах.
Ключевые слова: Пленка кремния, лазерный отжиг, морфология поверхности, удельная электропроводность, тонкопленочный солнечный элемент
01.04.07 - Физика конденсированного состояния , 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника на квантовых эффектах
Разработана численная модель лазерного отжига пленки TiO2 на TCO (прозрачный проводящий оксид, SnO2:F) / стеклянной подложке излучением с длиной волны 1064 нм (Nd:YAG лазер) с целью её кристаллизации и использования в перовскитовых солнечных элементах. В процессе моделирования использовался численный метод конечных разностей для решения системы одномерных нестационарных дифференциальных уравнений теплопроводности. В результате моделирования процесса лазерного отжига получено распределение температуры в структуре TiO2 / TCO / стеклянная подложка от различной мощности лазерного излучения. Показано, что высокой мощности лазерного излучения (30-100 Вт) достаточно для эффективного перехода металлоорганического прекурсора TiO2 в кристаллическую фазу анатаза TiO2 (температура перехода составляет 400-600 °С) в течение короткого периода времени (60 сек.) за счёт прямого поглощения фотонов лазерного излучения.
Ключевые слова: Численное моделирование, лазерный отжиг, пленка TiO2, уравнение теплопроводности, солнечный элемент
01.04.07 - Физика конденсированного состояния , 05.13.18 - Математическое моделирование, численные методы и комплексы программ
В работе проанализировано влияние формы выступа и его расположения на поверхности радиатора на температуру источника тепла. На основе теоретического анализа было показано, что штыри, ребра, петли и прочие выступы, присутствующие на поверхности радиатора, не увеличивают его теплоотводящей поверхности и не понижают температуру на теплонагруженном источнике. Данные конструкции лишь создают вблизи боковых поверхностей быстро убывающие дипольные, квадрупольные и прочие составляющие поля, которые не способствуют отвода тепла от источника, а создают циркулирующие потоки.
Ключевые слова: радиатор, форма выступа, теплопроводность, тепловой режим аппаратуры, температура источника тепла
05.02.02 - Машиноведение, системы приводов и детали машин , 05.23.03 - Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение